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AIR SHOCK HURLING OF AN UNFASTENED SOLID NEAR A FLAT OBSTACLE 

V. A. Kotlyarevskii UDC 621.01:531.66 

A formulation is given of the problem of a shock hurling a body near a solid flat ob- 
stacle. It is considered that the condition of a long shock interacting with the body [i] is 
satisfied and the force pattern is representable by two phases, diffraction and quasistation- 
ary streamlining. Initial conditions for the origination of different modes of motion, as 
well as the transient conditions associated with a variable mode during shock interaction 
with the obstacle, are considered for two versions of the diffraction load representation. 
The solution~is obtained by a numerical method. 

i. A body is considered that has a plane ~ of material symmetry in which forces from a 
shock and the reactions of unilateral constraints act, which corresponds to the plane-parallel 
motion of the body with variable (from 1 to 3) degrees of freedom. Let the plane ~ coincide 
with the inertial XOY coordinate system with origin at the body center of mass, which is sym- 
metric relative to Y and with two points of contact with the obstacle for t < 0 (Fig. i). 
The shock is propagated along the X axis and is continuous with the body at t = 0. The un- 
perturbed wave parameters are associated with the point X = 0. 

It is assumed that the system of forces in the diffraction phase is independent of the 
body displacements, which are not substantial, while it is determined inthe streamlining 
phase by stationary aerodynamics relationships in which the time t is a parameter [i]. Col- 
lision of the body support with the obstacle is considered absolutely inelastic while the re- 
sistance to displacement is subject to Coulomb's law. Four modes of motion are possible: i) 
(E = i) rotation in combination with slip along the obstacle; 2) (E = 2) rotation around a 
fixed axis; 3) (E = 3) slip; 4) (E = 4) flight without contact with the obstacle. Mode alter- 
nation is allowable during the motion. The criterion E = 0 is introduced for the state of 
rest. 

2. The load in the diffraction phase can be approximated by an instantaneous impulse or 
function of time, which is important to estimation of the body acceleration during its most 
intensive loading. It is considered that the impulses SW, SA, and the moment of the impulse 
MS are known along the X, Y axes. We then write the approximate expressions for the frontal 
force W, the lift force A, and the moment Mo for the second case. 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 
119-128, March-April, 1984. Original article submitted January 26, 1983. 
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Fig. I 

W(t) = Wm(l  - -  t/%) (0 < t ~ T < %), 

A (t) = A = t / ~  (0 < t ~ ~12), A (t) = A~ (t - -  t/XA) (X 1 < t ~ ~), 

M o = Mm(l - - t~M)  ( O < t ~ T ) ,  

in which the constants are determined in terms of the impulse components taking into account 
the connection t = r with the load functions in the quasistationary streamlining phase to the 
end of the diffraction phase 

~v~ ~-- f f  g6a p mf A., = 2SA/~ - -  (t12) ~, A~ = -2~A/(L ~ - -  ~), 

o), 
/M s -- / [ M s \ Z  t 2 M  s - - \ _  VIT)-t-v-+ o)-o (-too<O, 
t lMst( 0 )t  O. 

The c o n d i t i o n  M* S ~ r  1 d e n o t e s  no  s u b s t a n t i a l  d i f f e r e n c e  i n  t h e  e c c e n t r i c i t i e s  o f  t h e  
a e r o d y n a m i c  ( h ? )  a n d  t h e  i m p u l s e  ( h ) .  

F o r  t h e  s e c o n d  p h a s e ,  u n d e r  t h e  a s s u m p t i o n  t h a t  t h e  R e y n o l d s  n u m b e r s  Re a r e  i n  t h e  p o s t -  
critical domain, i.e., self-similarity in Re holds, as is characteristic for poorly stream- 
lined bodies, the loads are determined by the relationships 

W = APvel f (Apf , t )12~w(~,  Y)~W(~, Y, M(t)), 
A = h P v e l f ( h p f ,  t ) ~ A ( ~ ,  y)aA(~, y, M(~), 

M o = hPve l l (hp f  , t)l~CM(~, y)a M (~, y, M(~), 

where Apf, Apvel , and Apref are the pressure, the velocity head on the wave front, and the 
pressure of refl~ction from the solid wall, f is the function of velocity-head weakening 
[f(Apf, 0) = i]; Cw,A, Mare functions for the aerodynamic coefficients that depend on the 
generalized body coordinates (%~) for the Mach number M << I; UW,A, M are corrections for 
compressibility of air; F~ is the middle; Kf ! i is the mode factor; and I is the character- 
istic body dimension. 

The time r is determined from the condition of connection of expressions for the func- 
tion W by the solution of the equation 

W(~) ~ Wm(l - -  ~ / ~ 0 ) =  Q(~),' 
Q(t) ~ h P v e l f ( A p f ,  t)l~Cw(O , 0)~w(0 , 0, M(t)), x 0 = (i/2)~(1 - -  Sw/(Wm~)) .  

From the condition of continuity for A at t = T, t = mx, as well as for Mo at t = ~, we have 
(Mf is the Mach number on the shock front) 

~A = (Am (1/2)~)/(A m - -  A), A = APvelZW~(o, O)~A(0 , o, M(O)), 
x ~  ~ MmT/(M m - -  M0) , M 0 = hPvel/~CM(0, 0)~M(0 , 0, M(0)), M(0)= Mr. 

The f u n c t i o n s  C and  u a r e  o b t a i n e d  b y  t h e  m e t h o d s  o f  e x p e r i m e n t a l  a e r o d y n a m i c s ,  a n d  f 
and  M f r o m  t h e  s o l u t i o n  o f  t h e  p r o b l e m  o f  a p o i n t  e x p l o s i o n  [ 2 ] .  The i m p u l s e s  SW, SA, a n d  
SM a r e  m e a s u r e d  b y  u s i n g  d y n a m i c  s c a l e s  [ 3 ,  4 ] .  

3 .  The b e h a v i o r  o f  a b o d y  u n d e r  a l o a d  i s  d e s c r i b e d  b y  d y n a m i c  e q u i l i b r i u m  e q u a t i o n s  
and equations of constraints. The equations of plane motion of a body in projections on the 
X, Y axes have the form 
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m X " =  XFxj ,  m Y " =  EFuj,  1 9 " ' =  X momzF~ ,  ( 3 5 1 )  
j J J 

where ~ is the angle of body rotation around a center; m, body mass; I, its central moment 
of inertia relative to the z axis; EFxi, EFui , projections of the principal active and re- 

active force vectors; E momz Fi , moment of the principal vector relative to the z axis. 

The dot denotes the derivative with respect to t. 

In the general case we represent the reactions of the constraints in the form of (non- 
negative) vertical Ryi and horizontal Rxi components (i = i, 2). For E = i a constraint 
maintaining one of the supports on the obstacle is imposed on the body. We determine the 

nonzero reactions Rxi and Ry i by using the subscript i: 

~ =  I (sgn ~ = - - i ) ,  i = 2 (sgn T = 1). ( 3 . 2 )  

Denoting the possible displacements of the reference points by x i and Yi, we have the equa- 

tion of the constraint 

Yi = 0 (3.3) 

that yields the relationship Y(T). 

For a body with two degrees of freedom, we have the equations of motion and the rela- 

tionship for the vertical reaction from (3.1) 

I c p " =  Mo -7 z(Bxi sin ? - -  Byi  cos 7) sgn % ? = q) + ~z sgn % a < ~t/2; ( 3 . 4 )  

reX'" = W - -  Rxi; (3.5) 

Flui = m Y "  - -  2 ,  Y = A - -  rag. ( 3 . 6 )  

We write for the horizontal reaction 

iRxi I = ~oRvi, (3.7) 

where z is the reversal radius; a, angular coordinate of the center of inertia; ~o, friction 

coefficient; and g, free-fall acceleration. 

Taking account of the sign of the reference point velocity xi, we have a system of equa- 

tions for the case E= i (~0, xi~0, Ru~>0), ~= mz2/l from (3.3)-(3.7) 

~'" = h(Mo, Z, ~', 7, ~), ( 3 . 8 )  
fl  = [Mo + (t/2)~Iq)'~( s in 27 - -  2~t s in  2 7) 

- -  ~z(t t  s in 7 - -  cos ~) sgn q~][l - -  (l/2)~(~t s in 27 - -  2 cos ~, 7)]-1/1, 

X"_ = W / m  --  ~t[--"A/ra + z(/l(,Mo, A', q~', 7, ~t) cos ? - -  q)'~ s in 7) sgn q)], 

x~ = X'z(p" sin 7 sgn % Y ---- z ( s i n~  sgn q) - -  s in  a) ,  

By i = __~ -{- mz[fl(Mo ' ~ ,  (p', "~, F ~) cos 7 - -  (p.o. s in 7] sgn % 

Bxi = l~Rvi , ~t = I~o sgn x~. 

For E = 2 we have equations for two constraints: (3.3) and xi = 0 that yield relation- 
ships for Y(~), X(~). Taking account of the rule (3.2), from (3.1) we have a system of equa- 
tions for E = 2 (~4 0, Nv~>0, ~Rxi l<~0Byi), f~=f(i +~): 

~  

q~ ---- f2 ( M o '  W, A, ? ) ,  f3 = [Mo + z (W sin ? + ~ cos 7) sgn ~p] I~1 ;  

X = x i + z ( c o s ~ z - c o s 7 )  s g n %  Y =  z(sin T sgn (p - -  s in  a);  

B x i =  W --  mz[lo.(Mo, W, A,  7) s i n 7 +  r  

Ry i ~ - - A  + rnz[f2(Mo, W, A ,  7) c o s T - - q ) ' ~ s i n T ]  s g n T ,  

(3.9) 

(3.10) 

(3.11) 

(3.12) 

where x i = const is the displacement of the support at the beginning of this mode of motion. 
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For E = 3 (two constraints) both contact points are maintained on the obstacle surface, 
i.e., we have the constraints equation (3.3). This yields ~:Y:O, xi=X, i.e., the equa- 
tions for the case E = 3 (X" # O, Ry i > O, i = i, 2) are the following: 

X'" = ( W +  ~ , 4 ) m  -1, Y = cp = O; (3.13) 

I [ i Mo secc~] (3.14) 1~i=- ~- - - A ( l ~  ~tgcc) ~ ~ 

The lack of constraints is characteristic for the fourth mode. Taking (3.2) into ac- 
count, we have the following system of equations for E = 4 (Yi > 0): 

(p'" : Mo l - i ,  X'" : Wm -i, Y'" = 2m-L 

The formula for the vertical displacement Yi of the reference point is 

g ~ - Y  --z(sin?sgn T --sin ~). 

The systems of equations are integrated for initial and transient conditions determined 
as a function of the representation of the diffraction loads and the alternation of the mo- 

tion modes. 

4. Zero displacements and nonzero velocities determined by the impulse components de- 
pendent on the motion mode being realized are the initial conditions in approximating the ef- 
fect of the diffraction phase by an instantaneous impulse (and neglect of displacements dur- 

ing the shock). 

The impulse acting on the body is comprised of the active impulse S from the shock dur- 
ing the diffraction phase period and impulses of the constraint reactions. Because of the 
assumption about the absolutely inelastic nature of the collisions, the reactive impulse oc- 
curs at a contact point with zero vertical velocity after impact. The initial velocities 
~,X~,Y~ (after the action of the impulse) are determined by the constraints equations and 
the following momentum equations, in which zero velocities prior to the application of the 
impulse are taken into account: 

m X o : E S j x ,  m Y ; = ~ S j y ,  I ~ o = ~ m o m  oSj. ( 4 . 1 )  
j J J 

Here ESj~, E S j ~  are the components of the principal vector of the active S and reactive 
) 7 

impulses; ~ mom0Sy , moment of the principal vector of the impulses with respect to the cen- 
J 

tral axis z, and permanently acting forces are neglected. 

Let the impulse S be c011inear with the X axis and applied to the eccentricity h relative 
to the center of mass. The moment of the impulse is MS = Sh. Let us consider the conditions 
for the origination of the first motion mode for ~>0. Setting ~= O, s g n ~ =  ~ while Y'o~ > 
O, y'oz = 0 for the initial contact point velocities, we have 

YO = zTo cos c~ sgn qo 

and the relations for the reaction impulses Sxl = Syl 

(4.1), 
= O, Sx2 = ~Sy2, U = ~o sgn X'o2. 

]--I mz 2 
(po------ qOo(i) = - - "  " ~ i - - - - ~  ~ t  (~t sgn (9 sin 2(z - -  2 cos 2 (z) > O, ~ = - ] - ;  

. . S , 

The inequality (4.3) is equivalent to the following [v = h/(z sin u) > --i]: 

~to < 2,1 --~-- 2(t" + ~ cos ~ ~)/([~ sin 2~) > O(v > 0), llo > ~i(v < 0). 

For the contact point velocity we have (~ = ~o sgn x'o2), 

(4.2) 

From 

(4.3) 

(4.4) 

(4.5) 
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where, according to (4.5), the denominator of the fraction is positive for v > 0 and nega- 
tive for ~ < 0 for the case X'o= > 0. If x'oa < 0, then the denominator is nonnegative for 

> 0, and it can be shown that conditions sufficient for the realization of the first mode 
of motion for ~0>0 are [~o ~ ~ --v tan a/(v + I)]: 

F o < ~ o  < ~ '  O < v < ~ c t g ~ . . . s g n x ~ = i ,  ( 4 . 6 )  

~'o < O, v > }~1 ctg r 
3~02 sgn i .  

~o<i:~ol<~i o~  ~o<~i<l~ol 

For real values of u and ~ the parameter kx > 1 and the domain po > ko > %x, --i < v < 
0 (4.6) correspond to the value of the coefficient ~o > i. The condition ~o < kl < lkol for 
~o < 0 means, in practice, that ~o < i. 

For the first motion mode to occur for ~<0 , by taking ~ = 0. sgn ~ =--i, Y'o: = 0, 
Y'o= > 0, Sx~ = ~Sy~, Sx==Sy~ =0, we obtain (4.2)-(4.4) as well as x~=X~--zT~sina. It is 
seen from (4.3) that the inequality ~<0 is satisfied for any ~o and v < 0. For the veloc- 
ity of the contact point we hence have 

�9 S 

For po > --~o the inequality x'o~ > 0 is satisfied automatically also for any #o since Xo > O. 
Therefore, the first motion mode with the initial velocities (4.3) and (4.4) is realized 
under the conditions 

Fo < I;%1 < i ,  

O ~ V ~ l c t g c r  ( s g n q o ~ i ,  s g n x o 2 = i ) ,  

--i<v<0 (sgnT=--i. sgnx0,=i). 

Let us consider the conditions for origination of the second mode, for which Sxl = Sy: = 

x'o2 = y'o2 = 0, i.e., we have (4.2) and X~X0(2)=z~0sin=. Substituting the values of theLe 
velocities X'o and Y'o into (4.1), we obtain 

~o ~ ~o(2) = hS (v + l ) l [ Iv  (~ + l)]. ( 4 . 7 )  

Realization of this mode is possible under the conditions 

where, as is seen from (4.7), the former is always satisfied (v > --i). 

We write for the reaction impulses 

Sx2 = S - -  mz sin a -S(h  -~ z sin r 

Sy 2 = mz cos cz.S(h + z sin ct)llf;. 

(4.8) 

In the case Sx2 > 0 the second inequality in (4.8) yields ~o > %o for v < %z cotan u, where 
there should be v > 0 in order to have ~o < I, while if Sx2 < 0, then ~o > --%o for v > %1* 
cotan u, %o < 0. On the line v = %~ cotan a we have Sx2 = 0. Therefore, the second motion 
mode with the initial angular velocity from (4.7) is realized when IXol < ~o < i, ~ > 0. 

Origination of the third mode is possible for r~=~=0, X0>0. Equations (4.1) yield 
ESxr ~Sy i= Emom0Sr 0 i.e., Sy1+Sy2= 0and, according to Coulomb's law, Sxl + Sx2 = 0. 

Hence, at the beginning of slip no horizontal reactive impulses occur and the initial veloc- 
ity is determined (without losses because of collisions) by the total active impulse X'o = S/m. 

From the equation for the balance of the moment of the impulse hS + z(Syl -- Sy2) cos a = 
0, i.e., taking into account that Syl + Sy2 = 0, we obtain values of the vertical impulses 
Sy: =--Sy= =--hS/(2z cos ~). This result does not contradict the unilateral properties of 
the constraints just for h = 0, i.e., the mode 3 occurs under the unique condition v = 0, 
where the initial velocity corresponds to a body completely free of constraints. 
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Fig. 2 

The case of the origination of different modes of motion under the action of an instan- 

taneous impulse is shown in Fig. 2a in the ~o -- ~ plane. 

5. Let us consider the motion conditions by representing the diffraction phase by a pro- 
cess of finite duration in which the maximal loads along the X axis correspond to the time 
t = 0. In particular, this permits clarification of the condition of body immobility for low 
pressures Apf when the loads from the shock are equilibrated statically. In this case, three 
constraints (x = Y = ~ = 0) are imposed on the body and the equilibrium equations have the form 

Mo -- z[(Ru.,. - -  R~I) cos o~ - -  R x sin a]  = O, 

R x ~--" Rx t  ~- Rx2 : W, Ry  ~-- Ry i -~- Ry  2 = --~A. 

H e n c e  we o b t a i n  a f o r m u l a  f o r  t h e  v e r t i c a l  r e a c t i o n s  

+( =o ) 
Ryi=-- ~ • Wtgc~ •  . 

By virtue of the unilateral nature of the vertical constraints and the Coulomb law, the im- 

mobility conditions are Ry i > 0, R x < ~oRy, or, after substitution of the load values for 
t = 0 from Sec. 2, Mo = M m, W = Wm, A = 0, r < K, r < ~o, K = cotan a/(v + i), r = Mm/(mgh~ 

v = h~ sin ~), h ~ = Mm/W m. 

Furthermore, we consider the conditions of displaceability at the time t = +0 for which 
we take X = Y =?= X'= Y" -~" = 0 . We assume that for h ~ < 0, a < 7/4, and the value ~o < 
X:. The quantity X~ > 1 and the coefficient ~o can be variated to i. The parameter ~ can 
have the value ~ > ~J4 for h ~ > 0. 

For mode 1 to occur for ~ = i then there should be ~'> 0 while the horizontal ac- 

celeration of the center of inertia should exceed the acceleration that would occur without 
slip, i.e., by virtue of (3.10) there should be x"(0)> z?"(0) sin a. Expanding the inequalities 

by using the equations for the first mode in which we take ~ = ~0, sgn ~ = i we obtain 

rD I > Dz, vr > B2(v > O); rD 1 > D 2 ,  Po > K ( v =  0); 

D I = t ~- ~[t  -- (~ -~ 1) (sin2 ~ ~- (l/2)F0 sin 2a)]; 

D2 = ~0(t -~ ~ sin 2 a) - -  (I/2)~ sin 2a; B 2 ~ ctg a - -  F0. 

F o r  t h e  r e v e r s e  r o t a t i o n ,  b y  s e t t i n g  ? " < 0 ,  z o O > 0  f o r  s g n ? = - - t  we o b t a i n - - V r  > B1 -= 
c o t a n  a + V o ( v  < 0 )  f r o m  t h e  s a m e  e q u a t i o n s .  T h i s  c o n d i t i o n  i s  v a l i d  a l t h o u g h  t h e  d e n o m i n a t o r  
i n  t h e  r i g h t  s i d e  o f  ( 3 . 8 )  r e m a i n s  p o s i t i v e ,  i . e . ,  f o r  Vo > X~.  

R o t a t i o n a l  m o t i o n  a r o u n d  t h e  r i g h t  s u p p o r t  p o i n t  o c c u r s  f o r  ~ " >  0. Rx2 < v o R y 2 ,  Ry2 > 
0. Expanding these inequalities by using (3.9)-(3.12), for ~= I we will have rD1 < D2, 
r >K(v > 0). 
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Slip (mode 3) is realized for X'" > 0, Ry i > 0. By using (3.13) and (3.14), we obtain 
the conditions for realizing this mode 

~o ~ r<Be/v(v  > 0), r >  Pol Po < K(v ~ 0), ~o< r < B 1 / I v l ( V < ~ .  

The d i s p l a c e a b i l i t y  c o n d i t i o n s  i n  the  Fo-'C p l a n e  a r e  shown i n  F i g .  2b by domains whose 
numbers c o r r e s p o n d  to  the  mo t ion  modes,  w h i l e  the  b o u n d a r i e s  a r e  d e t e r m i n e d  by the  p a r a m e t e r s  
K, ~, and B, where K d e t e r m i n e s  the  domain of  inmaobi l i ty  <0> and i s  an i n d e x  of  the  t e n d e n c y  
o f  the  body to  a d e f i n i t e  mode of  m o t i o n .  As K grows ,  the  i m m o b i l i t y  domain b r o a d e n s ,  w h i l e  
the  t e n d e n c y  to  i n s t a b i l i t y  d i m i n i s h e s .  The v e r t i c a l  b o u n d a r y  ~o = Xx f o r  the  i n i t i a l  v a l u e s  
of  the  p a r a m e t e r s  o v e r l a p s  t h e  q u a n t i t y  ~o = 1. For ~ < 0 and a < ~ / 4 ,  we have K > 1. 

6.  Le t  us d e t e r m i n e  the  t r a n s i e n t  c o n d i t i o n s .  The p a s s a g e  from mode 1 t o  mode 2 (1--2) 
i s  r e a l i z e d  when r e t a r d i n g  t he  c o n t a c t  p o i n t ,  which f i x e s  the  change  i n  the  s i g n  o f  the  v e -  
l o c i t y  f o r  t h e  n u m e r i c a l  s o l u t i o n ,  i . e . ,  t he  c o n d i t i o n  x ' o ~ x ' o  < O, where x ' o ~  i s  the  v e l o c i t y  
i n  the  l a s t  t ime s p a c i n g  ( f o r  n u m e r i c a l  i n t e g r a t i o n  o f  the  s y s t e m s  o f  e q u a t i o n s ) .  The t r a n s i -  
t i o n  2--1 i s  r e l a t e d  to  the  e x c e s s  o f  the  h o r i z o n t a l  r e a c t i o n  o f  t he  (Coulomb) l i m i t  v a l u e  a c -  
c o r d i n g  to  the  c o n d i t i o n  Rxi > r i .  The t r a n s i t i o n s  3--1 a r e  d e t e r m i n e d  when the  n e g a t i v e  
s i g n  a p p e a r s  f o r  one o f  the  v e r t i c a l  r e a c t i o n s  Ry i < 0,  w h i l e  1--4 and 2-4  a r e  t he  n e g a t i v e  
s i g n  o f  the  r e a c t i o n  Ry i f o r  a un ique  c o n t a c t  p o i n t .  The men t ioned  t r a n s i t i o n s  a r e  s h o c k - f r e e .  

Le t  us c o n s i d e r  the  shock  t r a n s i t i o n s  1--3, 2--3, 4--1, 4--2, and a l s o  1 - 1 ,  1 -2 ,  2 - 1 ,  2-2 
t h a t  a r e  a s s o c i a t e d  w i t h  a change  i n  t he  s i g n  o f  the  a n g l e  ~. A c r i t e r i o n  o f  the  t r a n s i t i o n s  
4--1, 4--2 i s  the  d i s a p p e a r a n c e  o f  the  d i s t a n c e  Yi be tween  one o f  the  s u p p o r t  p o i n t s  and the  
o b s t a c l e .  As the  m o t i o n  goes  from one mode to  a n o t h e r  n o t  a s s o c i a t e d  w i t h  the  i m p a c t s  o f  
the  r e f e r e n c e  p o i n t s  on the  o b s t a c l e ,  t he  d i s p l a c e m e n t s  and v e l o c i t i e s  r ema in  c o n t i n u o u s .  
C o n s t r a i n t s  a r e  s u d d e n l y  imposed on the  moving body unde r  impac t  t r a n s i t i o n s ,  whereupon r e -  
a c t i v e  i m p u l s e s  o c c u r .  As above ,  a c o l l i s i o n  i s  c o n s i d e r e d  i n s t a n t a n e o u s  and a b s o l u t e l y  
i n e l a s t i c  ( t he  c o e f f i c i e n t  o f  r e s t o r a t i o n  e q u a l s  z e r o ) ;  c o n s e q u e n t l y ,  d i s p l a c e m e n t s  and i m -  
p u l s e s  f rom the  p e r m a n e n t l y  a c t i n g  f o r c e s  a r e  n e g l e c t e d .  The r e l a t i o n s h i p  be tween  the  r e -  
a c t i v e  impu l se  components  c o r r e s p o n d  to  t he  Coulomb law w i t h  c o e f f i c i e n t  ~o.  The sy s t em 
momentum changes  ( d i m i n i s h e s )  as  a r e s u l t  o f  the  a c t i o n  of  the  r e a c t i v e  i m p u l s e s  Sx and Sy 
d u r i n g  i m p a c t ,  i . e . ,  a jump d i m i n u t i o n  i n  the  v e l o c i t i e s  o r  a t r a n s f o r m a t i o n  of  the  m o t i o n  
o c c u r s .  

Le t  us c o n s i d e r  the  c a s e  of  body i n c i d e n c e  a t  an a n g l e  ~ @ 0 on one o f  the  s u p p o r t s  a t  
t he  t ime t = t , .  B e f o r e  impac t  ( t  = - - t , ) ,  t h e  v e l o c i t i e s  had t he  v a l u e s  X', Y', ~" and t h e  
v a l u e s  X ' , ,  Y ' , ,  and ~ a f t e r  t h e  impac t  ( t  = + t , ) .  The e q u a t i o n s  o f  t he  moments of  t h e  
i m p u l s e s  and t he  i m p u l s e s  w i t h  t he  i n e l a s t i c  impact  c o u p l i n g  e q u a t i o n  y . o i ( + t , )  = 0 

I (~: -- ~') ---- z (S x sin ? -- S~ cos ? sgn ~), (6 .1 )  

m ( x : . x ) = - s . ,  

c o n t a i n  f i v e  d e s i r e d  q u a n t i t i e s  $x, Sy, qJ:, X:, Y: where the  r e a c t i v e  i m p u l s e s  can be e x p r e s s e d  
i n  te rms  o f  the  a n g u l a r  v e l o c i t y  ~ 

s - ~ - ~ g n ~ [ ~ : ( t + ~ o ~ ) -  "-  1 y" ( 6. 2 ) x - -  z sin ~ ~ ~ --~- cos ? sgn ~ J; 

These expressions are valid in cases of the origination of modes 1 or 2. 
relationship dependent on the mode to be expected. If the mode 2 occurs after impact, 
x'oi(+t,) = 0, or 

and we obtain from (6.1) 

x = ~ "  sin ~ ~g. ~ (~o > t ~ I, ~ = G / G )  

If it turns out in the verification that the condition ~o > IXI 
mode 1 occurs as a result of the impact, where 

Let us add a 
then 

is not satisfied, then 
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S x : ~oSy sgn Xoi, Xoi = X" -- z~" sin ? sgn % 

a n d ,  t a k i n g  a c c o u n t  o f  ( 6 . 1 )  and  ( 6 . 2 ) ,  we o b t a i n  t h e  f o l l o w i n g  f o r m u l a s  f o r  t h e  v e l o c i t i e s :  

x:  < ' =  x' - .0 (z<' cos v 4 , ,  

Y" (9o sin ? sgn x~i cos ?) sgn ~" ---7- 

Furthermore, we c o n s i d e r  t h e  u s e  o f  s h o c k  t r a n s i t i o n s  w i t h  a c h a n g e  i n  t h e  s i g n  o f  t h e  
a n g l e  ~ ( t i l t i n g ) .  H e r e  t h e  i m p u l s e  o c c u r s  u n d e r  t h e  s u p p o r t  w h i c h  h a d  no c o n t a c t  w i t h  t h e  
o b s t a c l e  p r i o r  t o  t h e  i m p a c t  ( o t h e r w i s e  t h e  m o t i o n  c e a s e s  b e c a u s e  o f  i n e l a s t i c  i m p a c t ) .  I t  
h e n c e  f o l l o w s  t h a t  t h e  f o r m u l a s  p r e s e n t e d  a r e  v a l i d  e v e n  f o r  t h i s  c a s e  i f  we s e t  y = a t h e r e -  
i n  and  t a k e  t h e  v a l u e  o f  sgn~ f o r  t = + t , ,  i . e . ,  f o r  t h e  mode o f  m o t i o n  a g a i n  o c c u r r i n g .  The 
s i g n s  o f  t h e  v e l o c i t i e s  c a l c u l a t e d  b y  means  o f  t h e  f o r m u l a s  m e n t i o n e d  s h o u l d  c o r r e s p o n d  t o  
t h e  modes  o f  m o t i o n  t h a t  a p p e a r  a f t e r  i m p a c t .  W i t h o u t  s u c h  c o r r e s p o n d e n c e ,  s l i p  (mode 3) o r  
braking (halting) of the body will evidently occur. 

If rotation does not occur after impact, then the presence of impulses under both supports 
must be allowed. Introducing the four impulses Syx > 0, Sy2 > 0, Sx~ , and Sx2 by assuming 
that ~=Y~=0 after impact (t = +t,), and using the notation S x = Sx~ + Sxa, we write the 
equations for impact with the transition to slip for y = a 

- - I ~ ' =  z[(Sy i - -  Sy2) Cosa + Sxsin ~], 

(X:--X')=--Sx, --mY" =Sy, +Sy2, S x= ~o(Syl +Sy2) sg"X:" 

We hence have (i = i, 2) 

Let X', > 0 (sgn X', = i). 

S x = - -  ~tomY" sgn X:; ( 6 . 3 )  

S y  i = -T-(l~" + mzY" cos a + zS x sin a)/(2z cos a); ( 6 . 4 )  

X: = ~oY" sgn X: + X'. ( 6 . 5 )  

Then t a k i n g  i n t o  a c c o u n t  t h a t  Y" < 0 ,  we o b t a i n  f r o m  ( 6 , 5 )  

~o < -- X'IY', (6.6) 

and from (6.3) the expression 

S~ = - -  ~0mV" > O. (6.7) 

L e t  u s  n o t e  t h a t ,  i n  t h e  n u m e r i c a l  r e a l i z a t i o n  o f  t h e  p r o b l e m ,  t h e  i m p a c t  c r i t e r i o n  i s  
a change in the product sgn ~(t~)S~(P(tinu i) from plus to minus in the i + 1 time step (t i < t, < 
ti+1). Let us introduce sgn~,------sgn~(ti+1)=--sgn~(t 0 to fix the change in the mode of the mo- 
tion. Using the function sgn~, for t = +t,, and taking account of (6.7), we eliminate S x 
and the velocity y'=--zq0"sgn~,cos= from (6.4) to obtain 

l 2(z) -T- Svi_I~'[f~sgn~,(cos2rz~ - Z  ~o sin l ] / (2z cos a). 

Expanding the inequality Sy i > 0, and taking into account that the transition to slip is 
~" sgn ~ < 0 (~" sgn ~, > 0) for both variants, we obtain the condition 

~0 < go,. g0 = 2 (~ cos 2 a - -  sgn ~.)/(~ sin 2a). 

Now if we assume that X', < 0, then by repeating the procedure we will have, instead of 
(6.6), 

~t o < X'/Y ' ,  

and the following expression for the vertical impulses 

G~ = i,p" [ ~ ~g. ~.  (r ~ ~. +. (1/2) ~o ~i~ 2~) T-, ] /  (2~ ~o~ ~).  

(6.8) 
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We now obtain from the inequalities Sy i > 0 

2 ( - -  ~ cos 2 a + sgn ~ , ) / ( ~  sin 2a) < ~e < 2 (~ cos 2 a + sgn ~ , ) / ( ~  sin 2~) ~ ~oo. 

For real values of ~ and B the left inequality is satisfied automatically and it is suffi- 
cient to write ~o < h ~176 Since Y" < 0 always before impact, while ~o > 0, then the inequali- 
ties (6.6) and (6.8) are satisfied only under the condition sgn X" = sgn X',. This permits 
extending the results to the form 

Po < I X'IY" I, Po < • ~ 2 (~ cos 2 ~ - -  sgn X" sgn ~,)/(~ s in  2~), ( 6 . 9 )  

where, as before, the sign of the quantity 9, is opposite to the sign of the angle ~ before 
impact, while the velocity after impact with the passage to the mode 3 is determined by (6.5) 
in which sgn X', should be replaced by sgn X'. 

The body ceases to move when condition (6.9) is not satisfied, The loss of stability is 
determined by compliance with the condition IX[ > 7/2. 

The problem formulated is programmed for the ES electronic compute~. The system of 
equations is integrated by the Runge-Kutta method. 

7. Examples are presented of analysis of the motion of a body in the shape of a paral- 
lelepiped, loaded by a shock with the parameters Apf = 0.i MPa, and duration of the positive 
phase of the velocity head @ = 0.065 sec. The wave parameters (APvel , APref , Df, f(t/e)) 
are determined completely by the pressure Apf [2]. Two parallelepiped models of identical 
size were examined, of height ly, length lz, width (streamwise dimension) B with supports 
specifying the distance Ho from the lower face of the model to the obstacle: B/1 = 0.707, 
Ho/1 = 0.156, ly/1 = 0.448, 12/F8 = lylz/(Blz) = 0.633, 12 is the planform area of the body, 
center of inertia is on the vertical axis of symmetry, and for body 1 is below, and for 2 
above the geometric center. The coordinates of the center of inertia of body 1 are ~ = 
0.606 rad, z/1 = 0.43, and for body 2 are ~ = 0.903 tad, z/1 = 0.571. The functions C, 
~W,A,M (see Sec. i) are obtained by model testing in a wind tunnel. The impulse components 
of the diffraction phase are taken from data in [5]: KW ~ Sw/S, = 1.55, YA E SA/SW = 0.55, 
Xo E MS/(/Sw) = 0.35 rad for model i, and 0.14 for model 2, S, = (3B/2Df)(AprefF8 + Q(0)) is 
the characteristic impulse, Df is the wave front velocity, Apf/2/(mg) = 16.1, ge2/1 = 0.195, 
po = 0.67, g = 9.81 m/sec 2. The parameter B = mz2/I = 3.24 for model i, and 5.47 for model 2. 

Graphs of the horizontal and vertical motion of body 1 are presented in Fig. 3. Signif- 
icant acceleration gradients are observed in the diffraction phase at whose end the vertical 
acceleration becomes negative. For t/0 < 0.03, body rotation occurs around the right support 
(mode 2). For 0.03 < t/0 < 1.26, slip w~th rotation occurs (mode I), and then the vertical 
velocity vanishes upon colTision of the left support with the obstacle, the horizontal veloc- 
ity is halved, and the body makes the transition into slip for ~ = 0 (mode 3). The maximum 
velocity X'me/1 = 0.132 is achieved at the time t/O = 0.42, i.e., braking starts long before 
termination of the action of the shock. The maximum of the vertical shift in the center of 
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inertia Ym/l = 0.02 is reached at the time t/e = 0.61. Complete braking (halting) occurs 
for t/e = 1.6, when the horizontal shift reaches the maximum Xm/Z = 0.146. 

The motion parameters of body 2 are given in Fig. 4. Here the body moves according to 
mode 2 (~ > 0), in the interval 0 < t/e < 0.01, and then loses contact with the obstacle 
(passage to mode 4), where the sign of ~he angle ~ changes at the time t/e = 0.19. Impact 
on the obstacle for ~<0, t/e = 0.275 results in a velocity drop and passage to mode 2. 
Collision of the second support with the obstacle for t/8 = 0.49 and Xm/l = 0.061 causes 
halting of the body. Therefore, a change in the coordinates of the center of inertia would 
result in a substantial difference in both the qualitative pattern of body displacement near 
the obstacle and in the quantitative indices of the motion parameters. This distinction is 
governed to a significant degree by the change in the moment of the impulse and the aero- 
dynamic forces relative to the center as well as the reaction of the bonds with the shift in 
the center of inertia. 

Computations were performed for the version of approximating the diffraction phase ef- 
fect according to the relationships in Sec. 5. 

8. Let us give an estimate of the possible displacements of the surface of the obstacle 
bounding a linearly elastic half-space with the acoustic resistance AI (for instance, soil). 
Taking the boundary pressure in the form Ap(t) = Apf(l -- t/e) n, we have a formula for the 
surface displacement u(t) in a one-dimensional approximation 

U~u(t)Al(n+t)/(hpfO) = i - - ( 1  - - t /O)  n+l(O~t/O~l), U =  t ( t / 0 ~ t ) .  

The maximum displacement to the end of the action of the pressure equals 

Taking A~ = 1.6.10 ~ kg/(m2-sec) (medium-density soil), Apf = 0.i MPa, e = 0.065 sec, 
n = 2, we obtain Um/l = 6.4-10 -3 . Taking account of the value of the maximum displacements 
mentioned in Sec. 7, we arrive at the conclusion that the surface displacement is negligibly 
small, i.e., a hypothesis as about a solid obstacle is allowable for the surface of soil in 
this case. 

The author is grateful to L. A. Brodetskaya and E. G. Maiorova, who developed a computer 
program for this problem. 
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